首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of ochratoxin A in grains by immuno-ultrafiltration and HPLC-fluorescence detection after postcolumn derivatisation in an electrochemical cell
Authors:Elisabeth Viktoria Reiter  Margit Cichna-Markl  Duck-Hwa Chung  Won-Bo Shim  Jürgen Zentek  Ebrahim Razzazi-Fazeli
Institution:1.Institute of Animal Nutrition,University of Veterinary Medicine,Vienna,Austria;2.Institute of Animal Nutrition, Faculty of Veterinary Medicine,Freie Universit?t Berlin,Berlin,Germany;3.Department of Analytical Chemistry,University of Vienna,Vienna,Austria;4.Department of Food Science and Technology,Gyeongsang National University,Jinju,South Korea;5.VetCore/Proteomics,University of Veterinary Medicine,Vienna,Austria
Abstract:The paper presents a new sample clean-up method based on immuno-ultrafiltration for the analysis of ochratoxin A in cereals. In contrast to immunoaffinity chromatography, in immuno-ultrafiltration, the antibodies are used in non-immobilised form. Ochratoxin A was extracted with ACN/water (60/40, v/v), and the extract was loaded onto the ultrafiltration device. After a washing step with phosphate-buffered saline, containing 0.05% Tween 20, ochratoxin A was eluted with MeOH/acetic acid (99/1, v/v). The detection of ochratoxin A was carried out with high-performance liquid chromatography and a fluorescence detector coupled to an electrochemical cell (Coring cell). The electrochemical cell was used to eliminate matrix interferences by oxidising matrix compounds. The method was validated by repeatedly analysing spiked barley and rye samples as well as a certified wheat reference material. Recoveries and standard deviations (1 SD) were found to be 71 ± 9%, 77 ± 12% and 77 ± 8% in wheat, barley and rye, respectively. The limit of detection (S/N = 3) and limit of quantitation (S/N = 10) were determined to be 0.4 μg kg-1 and 1 μg kg-1. The analysis of the certified reference material resulted in ochratoxin A concentrations which were in the range assigned by the producer. Additionally, the effect of the electrochemical cell on other widely used clean-up techniques, namely the immunoaffinity clean-up and multifunctional columns (Mycosep #229), was evaluated. In all clean-up methods, an improvement of the chromatogram quality was registered.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号