首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The size dependence of micro-toughness in ductile fracture
Authors:Kartik Srinivasan  Yonggang Huang  Otmar Kolednik  Thomas Siegmund  
Institution:aSchool of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;bDepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA;cErich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria
Abstract:Micro-toughness in ductile fracture is defined as the plastic work dissipated per unit fracture surface area in the material separation processes of void growth and coalescence. A micromechanics model for the estimation of the size dependence of micro-toughness in ductile fracture is presented. Size effects are incorporated in the model using the conventional mechanism-based strain gradient plasticity (CMSG) theory. A finite element model of an axisymmetric representative unit cell with an initial spherical void is used to validate model predictions. Two characteristic length scales emerge from the model. The initial void radius sets the scale for the initial spherical void growth. For the subsequent void coalescence, the scale is set by the width of the intervoid ligament. Energy dissipation in ductile fracture is found to be dominated by the mechanisms of coalescence, and the micro-toughness in ductile fracture is found to be size dependent for dimple sizes approximately one order of magnitude larger than the material length scale.
Keywords:Fracture toughness  Voids and inclusions  Fractography  Ductility  Metallic materials
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号