首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polarization effects and charge separation in AgCl-water clusters
Authors:Godinho S S M C  Cabral do Couto P  Costa Cabral B J
Institution:Grupo de Física Matemática da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisbon, Portugal.
Abstract:Structural, energetic, vibrational, and electronic properties of salt ion pairs (AgCl and NaCl) in water (W) clusters were investigated by density functional theory. In agreement with recent theoretical studies of NaCl-water clusters, structures where the salt ion pair is separated by solvent molecules or solvent separated ion pair (SSIP) were found in AgCl-W(6) and AgCl-W(8) aggregates. Our results indicate that for small AgCl-water clusters, contact ion pair (CIP) structures are energetically more stable than SSIP, whereas an opposite tendency was observed for NaCl-water clusters. In comparison with CIP, SSIP are characterized by extensive electronic density reorganization, reflecting enhanced polarization effects. A major difference between AgCl-water and NaCl-water CIP aggregates concerns charge transfer. In AgCl-water CIP clusters, charge is transferred from the solvent (water) to the ion pair. However, in NaCl-water CIP clusters charge is transferred from the ion pair to the water molecules. The electronic density reorganization in the aggregates was also discussed through the analysis of electronic density difference isosurfaces. Time dependent density functional theory calculations show that upon complexation of AgCl and NaCl with water molecules, excitation energies are significantly blueshifted relative to the isolated ion pairs ( approximately 2 eV for AgCl-W(8) SSIP). In keeping with results for NaI-water clusters Peslherbe et al., J. Phys. Chem. A 104, 4533 (2000)], electronic oscillator strengths of transitions to excited states are weaker for SSIP than for CIP structures. However, our results also suggest that the difference between excitation energies and oscillator strengths of CIP and SSIP structures may decrease with increasing cluster size.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号