首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identification of free and conjugated metabolites of mesocarb in human urine by LC-MS/MS
Authors:C Gómez  J Segura  N Monfort  T Suominen  A Leinonen  M Vahermo  J Yli-Kauhaluoma  R Ventura
Institution:(1) Bioanalysis and Analytical Services Research Group, Neuropsychopharmacology Research Program, IMIM-Hospital del Mar, Doctor Aiguader, 88, 08003 Barcelona, Spain;(2) Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain;(3) United Medix Laboratories Ltd, Doping Control Laboratory, 00380 Helsinki, Finland;(4) Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
Abstract:The objective of the present study was to investigate mesocarb metabolism in humans. Samples obtained after administration of mesocarb to healthy volunteers were studied. The samples were extracted at alkaline pH using ethyl acetate and salting-out effect to recover metabolites excreted free and conjugated with sulfate. A complementary procedure was applied to recover conjugates with glucuronic acid or with sulfate consisting of the extraction of the urines with XAD-2 columns previously conditioned with methanol and deionized water; the columns were then washed with water and finally eluted with methanol. In both cases, the dried extracts were reconstituted and analyzed by ultra-performance liquid chromatography–tandem mass spectrometry. Chromatographic separation was carried out using a C18 column (100 mm × 2.1 mm i.d., 1.7 μm particle size) and a mobile phase consisting of water and acetonitrile with 0.01% formic acid with gradient elution. The chromatographic system was coupled to a mass spectrometer with an electrospray ionization source working in positive mode. Metabolic experiments were performed in multiple-reaction monitoring mode by monitoring one transition for each potential mesocarb metabolite. Mesocarb and 19 metabolites were identified in human urine, including mono-, di-, and trihydroxylated metabolites excreted free as well as conjugated with sulfate or glucuronic acid. All metabolites were detected up to 48 h after administration. The structures of most metabolites were proposed based on data from reference standards available and molecular mass and product ion mass spectra of the peaks detected. The direct detection of mesocarb metabolites conjugated with sulfate and glucuronic acid without previous hydrolysis has been described for the first time. Finally, a screening method to detect the administration of mesocarb in routine antidoping control analyses was proposed and validated based on the detection of the main mesocarb metabolites in human urine (p-hydroxymesocarb and p-hydroxymesocarb sulfate). After analysis of several blank urines, the method demonstrated to be specific. Extraction recoveries of 100.3 ± 0.8 and 105.9 ± 10.8 (n = 4), and limits of detection of 0.5 and 0.1 ng mL−1 were obtained for p-hydroxymesocarb sulfate and p-hydroxymesocarb, respectively. The intra- and inter-assay precisions were estimated at two concentration levels, 50 and 250 ng mL−1, and relative standard deviations were lower than 15% in all cases (n = 4).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号