首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low‐Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition
Authors:Dr Andrew J Binder  Dr Todd J Toops  Dr Raymond R Unocic  Dr James E Parks II  Prof Sheng Dai
Institution:1. Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA);2. Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA);3. Department of Chemistry, University of Tennessee, Knoxville, TN 37966 (USA)
Abstract:Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light‐off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. This catalyst shows great potential as a low‐cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.
Keywords:CO oxidation  emissions control  heterogeneous catalysis  IR spectroscopy  transition metals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号