首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced deconstruction and dissolution of lignocellulosic biomass in ionic liquid at high water content by lithium chloride
Authors:Zhiqiang Pang  Cuihua Dong  Xuejun Pan
Institution:1.Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education,Qilu University of Technology,Jinan,China;2.Department of Biological Systems Engineering,University of Wisconsin-Madison,Madison,USA
Abstract:Fabricating an aqueous ionic liquid (IL) for deconstruction and dissolution of lignocellulose is attractive because addition of water could reduce the cost and viscosity of the solvent and improve the biomass processing, but the solvating power of the IL is usually depressed in the presence of water. In the present study, an aqueous IL consisting of 1-butyl-3-methylimidazolium chloride (BmimCl), water, and lithium chloride was fabricated for efficient deconstruction and dissolution of lignocellulose (bamboo). The dissolution of cell wall components (cellulose, lignin, and hemicelluloses) in the aqueous IL was investigated. The results indicated that the presence of water significantly reduced the solvating power of BmimCl; For example, 11.5 % water decreased the dissolution of bamboo in BmimCl from ~97 to ~53 %. Dissolution of cellulose and lignin was specifically depressed. However, addition of lithium chloride was able to improve the tolerance of BmimCl to water and enhance the deconstruction and dissolution of biomass in BmimCl with high water content. It was found that approximately 80 % bamboo could be dissolved in solvent consisting of 45 wt% BmimCl and 55 wt% LiCl·2H2O (25 wt% overall water content in the solvent). In particular, lignin and hemicelluloses were selectively dissolved by 96 and 92 %, respectively. The undissolved residue was predominantly composed of cellulose (~86 %) with a small amount of lignin (<5 %). BmimCl-LiCl-H2O is a promising and effective solvent system with low cost and viscosity for biomass processing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号