首页 | 本学科首页   官方微博 | 高级检索  
     


A fast multi-resolution approach to tomographic PIV
Authors:Stefano Discetti  Tommaso Astarita
Affiliation:(1) Department of Aerospace Engineering (DIAS), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
Abstract:
Tomographic particle image velocimetry (Tomo-PIV) is a recently developed three-component, three-dimensional anemometric non-intrusive measurement technique, based on an optical tomographic reconstruction applied to simultaneously recorded images of the distribution of light intensity scattered by seeding particles immersed into the flow. Nowadays, the reconstruction process is carried out mainly by iterative algebraic reconstruction techniques, well suited to handle the problem of limited number of views, but computationally intensive and memory demanding. The adoption of the multiplicative algebraic reconstruction technique (MART) has become more and more accepted. In the present work, a novel multi-resolution approach is proposed, relying on the adoption of a coarser grid in the first step of the reconstruction to obtain a fast estimation of a reliable and accurate first guess. A performance assessment, carried out on three-dimensional computer-generated distributions of particles, shows a substantial acceleration of the reconstruction process for all the tested seeding densities with respect to the standard method based on 5 MART iterations; a relevant reduction in the memory storage is also achieved. Furthermore, a slight accuracy improvement is noticed. A modified version, improved by a multiplicative line of sight estimation of the first guess on the compressed configuration, is also tested, exhibiting a further remarkable decrease in both memory storage and computational effort, mostly at the lowest tested seeding densities, while retaining the same performances in terms of accuracy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号