首页 | 本学科首页   官方微博 | 高级检索  
     


Partial difference equation method for lattice path problems
Authors:R. Brak  J. W. Essam  A. L. Owczarek
Affiliation:(1) Department of Mathematics and Statistics, The University of Melbourne, 3052 Parkville, VIC, Australia;(2) Department of Mathematics, Royal Holloway, University of London, TW20 0EX Egham, Surrey, England
Abstract:Many problems concerning lattice paths, especially on the square lattice have been exactly solved. For a single path, many methods exist that allow exact calculation regardless of whether the path inhabits a strip, a semi-infinite space or infinite space, or perhaps interacts with the walls. It has been shown that a transfer matrix method using the Bethe Ansatz allows for the calculation of the partition function for many non-intersecting paths interacting with a wall. This problem can also be considered using the Gessel-Viennot methodology. In a concurrent development, two non-intersecting paths interacting with a wall have been examined in semi-infinite space using a set of partial difference equations.Here, we review thispartial difference equation method for the case of one path in a half plane. We then demonstrate that the answer for arbitrary numbers of non-intersecting paths interacting with a wall can be obtained using this method. One reason for doing this is its pedagogical value in showing its ease of use compared to the transfer matrix method. The solution is expressed in a new form as a ldquoconstant termrdquo formula, which is readily evaluated. More importantly, it is the natural method that generalizes easily to many intersecting paths where there is inter-path interactions (e.g., osculating lattice paths). We discuss the relationship of the partial difference equation method to the transfer matrix method and their solution via a Bethe Ansatz.
Keywords:05A15  82B41
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号