首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Redesigning enzymes based on adaptive evolution for optimal function in synthetic metabolic pathways
Authors:Yoshikuni Yasuo  Dietrich Jeffrey A  Nowroozi Farnaz F  Babbitt Patricia C  Keasling Jay D
Institution:UCSF/UCB Joint Graduate Group in Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.
Abstract:Nature has balanced most metabolic pathways such that no one enzyme in the pathway controls the flux through that pathway. However, unnatural or nonnative, constructed metabolic pathways may have limited product flux due to unfavorable in vivo properties of one or more enzymes in the pathway. One such example is the mevalonate-based isoprenoid biosynthetic pathway that we previously reconstructed in Escherichia coli. We have used a probable mechanism of adaptive evolution to engineer the in vivo properties of two enzymes (3-hydroxy-3-methylglutaryl-CoA reductase tHMGR] and many terpene synthases) in this pathway and thereby eliminate or minimize the bottleneck created by these inefficient or nonfunctional enzymes. Here, we demonstrate how we significantly improved the productivity (by approximately 1000 fold) of this reconstructed biosynthetic pathway using this strategy. We anticipate that this strategy will find broad applicability in the functional construction (or reconstruction) of biological pathways in heterologous hosts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号