首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Imaging the photodissociation of CH3SH in the first and second absorption bands: the CH3(X2A1)+SH(X2Pi) channel
Authors:Amaral G A  Ausfelder F  Izquierdo J G  Rubio-Lago L  Bañares L
Institution:Departamento de Quimica Fisica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Abstract:The CH3(X2A1)+SH(X2Pi) channel of the photodissociation of CH3SH has been investigated at several wavelengths in the first 1 1A"<--X 1A' and second 2 1A"<--X1A' absorption bands by means of velocity map imaging of the CH3 fragment. A fast highly anisotropic (beta=-1+/-0.1) CH3(X2A1) signal has been observed in the images at all the photolysis wavelengths studied, which is consistent with a direct dissociation process from an electronically excited state by cleavage of the C-S bond in the parent molecule. From the analysis of the CH3 images, vibrational populations of the SH(X2Pi) counterfragment have been extracted. In the second absorption band, the SH fragment is formed with an inverted vibrational distribution as a consequence of the forces acting in the crossing from the bound 2 1A" second excited state to the unbound 1 1A" first excited state. The internal energy of the SH radical increases as the photolysis wavelength decreases. In the case of photodissociation via the first excited state, the direct production of CH3 leaves the SH counterfragment with little internal excitation. Moreover, at the longer photolysis wavelengths corresponding to excitation to the 1 1A" state, a slower anisotropic CH3 channel has been observed (beta=-0.8+/-0.1) consistent with a two step photodissociation process, where the first step corresponds to the production of CH3S(X2E) radicals via cleavage of the S-H bond in CH3SH, followed by photodissociation of the nascent CH3S radicals yielding CH3(X2A1)+S(X3P0,1,2).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号