首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spin-selective low temperature spectroscopy on single molecules with a triplet-triplet optical transition: Application to the NV defect center in diamond
Authors:A P Nizovtsev  S Ya Kilin  F Jelezko  I Popa  A Gruber  C Tietz  J Wrachtrup
Institution:(1) Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus;(2) Institute of Physics, University of Stuttgart, Stuttgart, 70569, Germany
Abstract:The spin-selective photokinetics of a single matrix-isolated impurity molecule with a triplet-triplet optical transition, T 0T 1, is considered and the manifestations of the photokinetics in the fluorescence excitation spectra and intensity autocorrelation functions g (2)(τ) of the molecule undergoing narrow-band optical excitation is studied to resolve the fine structure of the transition. The rates of intersystem crossings (ISCs) T 1ST 0 to and from a nonradiating singlet state S of the molecule and the rate of population relaxation among the ground (T 0) state sublevels can be obtained from the spectra and g (2)(τ) using the analytical expressions obtained. New experiments on an individual NV defect center in nanocrystals of diamond, where, for the first time, the fine structure of its triplet-triplet 3 A-3 E zero-phonon optical transition (~637 nm) at 1.4 K was resolved, are interpreted. It is concluded that the rate of the ISC transition from the m S =0 sublevel of the excited 3 E state to the singlet 1 A state (~1 kHz) is much slower than the rates from the m S =±1 substates, while the rates of ISC transitions to different m S substates of the ground 3 A state are close to each other (~1 Hz). As a result, only the optical transition between m S =0 sublevels in the 3 A-3 E manifold contributes strongly to the fluorescence. The experimentally observed double-exponential decay of the g (2)(τ) function is explained by the two pathways available to the center for it to leave the S state: (i) the ST 0(m S )=0) transition and (ii) the ST 0(m S =±1) transitions followed by the slow spin-lattice relaxation T 0(m S =±1)→T 0(m S =0) (rate ~0.1 Hz). The work is important for studies where the NV center is used as a single photon source or for quantum information processing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号