Magnetotransport and magnetotunneling in single-layer, two-layer, and three-layer Bi2Sr2Can−1CunOz (n=1,2,3) single crystals |
| |
Authors: | S. I. Vedeneev A. G. M. Jansen P. Wyder |
| |
Abstract: | In continuous magnetic fields H up to 28 T, we have studied the out-of-plane transport properties and tunneling characteristics of high-quality nondoped single crystals of the Bi-cuprate family: Bi2Sr2CuO6+δ (Bi2201), Bi2Sr2CaCu2O8+δ (Bi2212) and Bi2Sr2Ca2Cu3O10+δ (Bi2223) grown by an identical method. For all compounds the out-of-plane magnetotransport ρc(H) is negative in the temperature region where ρc(T) shows in the normal state a semiconducting-like temperature dependence. The negative magnetoresistance of ρc corresponds to the suppression of the semiconducting temperature dependence of ρc(T) which is found to be isotropic. For the Bi2201 compound, where the normal state can be reached in the available magnetic fields (28 T), a nearly complete suppression of the low-temperature upturn in ρc(T) is observed in the highest magnetic fields with a tendency towards a metallic behavior down to the lowest temperatures (0.4 K). Using the break-junction technique, especially for the Bi2212 and Bi2232 compounds, a clear superconducting gap structure can be observed. Both for temperatures above the critical temperature and for magnetic fields above the upper critical field, a pseudogap structure remains present in the tunneling spectra. The applied magnetic fields yield a stronger suppression of the superconducting state compared to that of the normal-state gap structures as manifested in ρc(T) transport and tunneling. |
| |
Keywords: | Magnetotransport Magnetotunneling Single crystals Bi2Sr2Can− 1CunOz |
本文献已被 ScienceDirect 等数据库收录! |
|