首页 | 本学科首页   官方微博 | 高级检索  
     


Performance Analysis of Cyclical Simulated Annealing Algorithms
Authors:Sheldon?H.?Jacobson  mailto:shj@uiuc.edu"   title="  shj@uiuc.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Shane?N.?Hall,Laura?A.?McLay,Jeffrey?E.?Orosz
Affiliation:(1) Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street (MC 244), Urbana, IL 61801-2906, USA;(2) Ritchie Capital Management, Batavia, IL 60510, USA
Abstract:
Generalized hill climbing (GHC) algorithms provide a framework for modeling local search algorithms for addressing intractable discrete optimization problems. Measures for assessing the finite-time performance of GHC algorithms have been developed using this framework, including the expected number of iterations to visit a predetermined objective function value level. This paper analyzes how the expected number of iterations to visit a predetermined objective function value level can be estimated for cyclical simulated annealing. Cyclical simulated annealing uses a cooling schedule that cycles through a set of temperature values. Computational results with traveling salesman problem instances taken from TSPLIB show how the expected number of iterations to visit solutions with predetermined objective function levels can be estimated for cyclical simulated annealing.AMS 2000 Subject Classification 90-08 Computational Methods: Local Search, 90C59 Heuristics: Simulated Annealing
Keywords:local search algorithms  heuristics  simulated annealing  cooling schedules
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号