Abstract: | The ethanol effect on the Trichoderma reesei cellulases was studied to quantify and clarify this inhibition type. To determine inhibition parameters of crude cellulase and purified exoglucanase Cel7A, integrated Michaelis-Menten equations were used assuming the presence of two inhibitors: cellobiose as the reaction product and ethanol as a possible bioproduct of cellulose fermentation. It was found that hydrolysis of cellulose by crude enzyme follows a model that considers noncompetitive inhibition by ethanol, whereas Cel7A is very slightly competitively inhibited. Crude cellulase is much more inhibited (K iul=K icl=151.9 mM) than exoglucanase Cel7A (K icl=1.6 × 1015 mM). Also, calculated inhibition constants showed that cellobiose inhibition is more potent than ethanol inhibition both for the crude enzyme as well as exoglucanase Cel7A. |