首页 | 本学科首页   官方微博 | 高级检索  
     


Non-randomized policies for constrained Markov decision processes
Authors:Richard C. Chen  Eugene A. Feinberg
Affiliation:(1) Radar Division, Naval Research Laboratory, Code 5341, Washington, DC 20375, USA;(2) Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794-3600, USA
Abstract:This paper addresses constrained Markov decision processes, with expected discounted total cost criteria, which are controlled by non-randomized policies. A dynamic programming approach is used to construct optimal policies. The convergence of the series of finite horizon value functions to the infinite horizon value function is also shown. A simple example illustrating an application is presented.
Keywords:Constrained Markov  Decision processes  Dynamic programming  Non-randomized policies
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号