首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equilibrium structure of the carbon dioxide-water complex in the gas phase: an ab initio and density functional study
Authors:Martina Kieninger and Oscar N Ventura
Institution:

MTC-Lab, Faculty of Chemistry, P.O. Box 1157, Montevideo 11800, Uruguay

Abstract:High-level ab initio (MP2/6-311++G(2d,2p) geometry, Gaussian-2, MP4(SDTQ) and QCISD(T) binding energies) and density-functional (Becke3LYP/6-311++G(2df,2pd)) calculations have been performed on the charge-transfer complex between water and carbon dioxide. The complex appears to have two equivalent non-planar minima of Cs symmetry. Minima are separated by transition states with C1 symmetry, whereas the totally planar structure with C2v symmetry is a second-order transition state. All the critical points lie at approximately the same energy (less than 0.05 Kj mol−1 difference). Therefore, the experimentally observable structure should be planar. The best equilibrium intermolecular distance for this complex calculated at the MP2/6-311++G(2d,2p) level is 2.800 Å. Our best estimate of the observable intermolecular distance (corrected for anharmonicity) is 2.84 Å, in agreement with the experimentally derived value of 2.836 Å. Our best estimate of the binding energy at the QCISD(T) level, taking into account the variation of the distance owing to anharmonicity and the use of more sophisticated theoretical treatments, is −12.0 ± 0.2 kJ mol−1. Our best estimate of the barrier to internal rotation, also at the MP2/6-311++G(2d,2p) level, is 4.0 kJ mol−1, outside the error limits of the experimental determination (3.64 ± 0.04 kJ mol−1). Density functional theory at the level employed here gives an equilibrium intermolecular distance that is too large (2.857 Å), a binding energy that is too small (8.1 kJ mol−1), attributable neither to geometry nor to the basis set, and also a barrier to internal rotation that is slightly too small (3.39 kJ mol−1). The overall picture is, however, reasonably good.
Keywords:Ab initio  Carbon dioxide  Density functional  Van der Waals complex  Water
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号