首页 | 本学科首页   官方微博 | 高级检索  
     


Compressible gas-liquid mixture flow at abrupt pipe enlargements
Authors:M.R. Davis  
Affiliation:

Department of Civil and Mechanical Engineering, University of Tasmania, Hobart, Australia

Abstract:
A detailed investigation was made of the flow of compressible gas-liquid mixtures through sudden enlargements in diameter of circular pipes. One-dimensional analysis shows that the dimensionless pressure rise varies with mixture void fraction and mixture momentum, while the establishment of choking conditions at the enlargement is controlled by the length of pipe downstream in which frictional pipe flow occurs. The flows were found to exhibit two characteristic modes, jet flow and submerged flow, with intermediate flows displaying unsteady oscillation between these modes. The distance to the downstream position of maximum pressure increased steadily with mixture void fraction when the upstream pipe outlet was choked, varying from 5 to 50 times the downstream pipe diameter. If the flow was not choked, this distance was much smaller and showed discrete fixed values associated with the mode of flow.

One-dimensional analysis accurately predicted maximum pressure, but when flow was choked at the enlargement the calculation was sensitive to the pressure in the region of separated flow surrounding the central jet in the enlargement. Although analysis of maximum pressure in terms of flow expansion and normal shock gave a general indication of the maximum pressure (which was thus concluded to depend on the general flow processes expected in the enlargement), accurate prediction of maximum pressures will depend on empirical knowledge of the separated flow region pressures. The maximum pressure rise was found to be in the range extending down to 0.3 of the upstream pipe outlet pressure and reduced with void fraction; it was also influenced by the enlargement area ratio. Flows in the approach and outlet pipes were found to be compressible, frictional pipe flows of the Fanno type, with somewhat reduced friction factors occurring in the outlet pipe.

Keywords:gas-liquid mixture flow   abrupt enlargements   compressible flow   two-phase flow   bubbly flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号