首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deformation Driven Homogenization of Fracturing Solids
Authors:Ercan Gürses  Manuel Birkle  Christian Miehe
Institution:University of Stuttgart, Institute of Applied Mechanics (Chair I), Pfaffenwaldring 7 70550 Stuttgart GERMANY
Abstract:The paper discusses numerical formulations of the homogenization for solids with discrete crack development. We focus on multi–phase microstructures of heterogeneous materials, where fracture occurs in the form of debonding mechanisms as well as matrix cracking. The definition of overall properties critically depends on the developing discontinuities. To this end, we extend continuous formulations 1] to microstructures with discontinuities 2]. The basic underlying structure is a canonical variational formulation in the fully nonlinear range based on incremental energy minimization. We develop algorithms for numerical homogenization of fracturing solids in a deformation–driven context with non–trivial formulations of boundary conditions for (i) linear deformation and (ii) uniform tractions. The overall response of composite materials with fracturing microstructures are investigated. As a key result, we show the significance of the proposed non–trivial formulation of a traction–type boundary condition in the deformation–driven context. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号