The Isocyanide–Cyanide Rearrangement; Mechanism and Preparative Applications |
| |
Authors: | Christoph Rü chardt,Michael Meier,Klaus Haaf,Joachim Pakusch,Erwin K. A. Wolber,Barbara Mü ller |
| |
Abstract: | ![]() Until recently the isocyanide–cyanide rearrangement was of interest almost solely as an example of a unimolecular gas-phase reaction, and kinetic studies had been carried out in only a few simple cases. Kinetic measurements in solution were made possible only by the discovery and suppression of a parallel free-radical chain process which leads to the same products. The rate of the isomerization is almost independent of the structure of the starting material and of the substituents present. An exception is provided by extreme steric hindrance in three dimensions which, as in tris-α-substituted triptycyl isocyanides, leads to a considerable increase in the activation energy. The results can be interpreted in terms of a purely sigmatropic mechanism, as predicted by ab initio calculations. The preparative application of this rearrangement reaction requires the suppression of side reactions and can best be carried out by flash pyrolysis; yields are then almost quantitative. Allyl isocyanides react without allyl isomerization, optically active isocyanides with complete retention of configuration. New, economically interesting syntheses for the known nonsteroidal anti-inflammatory drugs ibuprofen and (S)-naproxene are described. The application of the useful synthetic building blocks, the optically active β-acyloxy cyanides, which are formed from optically active α-amino acids, will be demonstrated. |
| |
Keywords: | Rearrangement Synthetic methods Cyanides Isocyanides |
|
|