首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Grüneisen ratio quest for self-duality of quantum criticality in a spin-1/2 XY chain with Dzyaloshinskii–Moriya interaction
摘    要:The quantum phase transition(QPT) and quantum criticality of an anisotropic spin-1/2 XY chain under the interplay of magnetic field and Dzyaloshinskii–Moriya(DM) interaction, which is interpreted as an electric field, are investigated, wherein the anisotropic parameter plays a similar role as the superconducting pairing gap in the interacting Kitaev topological superconductor model that protects the topological order. It is shown that the thermal Drude weight is a good quantity to characterize the gapped(D_(th) = 0) and gapless(D_(th) 0) ground states. The continuous QPT is marked by a quantum critical point(QCP) associated with entropy accumulation, which is manifested by a characteristic Güneisen ratio(GR) with or without selfduality symmetry. It is shown that at a self-dual QCP, the GR keeps a finite value as T→0,while at a general QCP without self-duality symmetry, it displays a power-law temperature dependent divergence: Γ(T,r_c)~±T~(-1),which provides a novel thermodynamic means for probing QPT.

收稿时间:2021-04-27
本文献已被 CNKI 等数据库收录!
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号