首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of hydrostatic pressure and temperature on the nonlinear optical properties of semiparabolic plus semi-inverse squared quantum wells
Authors:Guo-Liang Xu  Zi Zhen  Yi-Sheng Shi  Kang-Xian Guo  E Feddi  Jian-Hui Yuan  Zhi-Hai Zhang
Abstract:In this study, the effects of hydrostatic pressure and temperature on nonlinear optical rectification(OR), second-harmonic generation(SHG), third-harmonic generation(THG) and the linear,nonlinear, and total optical absorption coefficients(OACs) of a semiparabolic plus semi-inverse squared quantum well(QW) are theoretically investigated. The results show that hydrostatic pressure and temperature have significant effects on the optical properties of semiparabolic plus semi-inverse squared QWs, and that the energy levels and magnitudes of the resonant peaks of OR, SHG, THG, and the total OACs vary according to the shape of the limiting potential, the hydrostatic pressure, and the temperature. It is easily seen that the peak positions of the resonant peaks of OR, SHG, THG, and the total OACs in the semiparabolic plus semi-inverse squared QW show a red shift with increasing hydrostatic pressure, but a blue shift with increasing temperature. Therefore, the magnitude and position of the resonant peaks of OR, SHG, THG,and the total OACs can be adjusted by changing the hydrostatic pressure and the temperature,which promise a new degree of freedom in the tunability of various electro-optical devices.
Keywords:Quantum well  Optical properties  Hydrostatic pressure  Temperature  
本文献已被 CNKI 等数据库收录!
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号