首页 | 本学科首页   官方微博 | 高级检索  
     


PORPHYRIN-SENSITIZED PHOTOREACTIONS IN THE PRESENCE OF ASCORBATE: OXIDATION OF CELL MEMBRANE LIPIDS AND HYDROXYL RADICAL TRAPS
Authors:GARY J. BACHOWSKI  KIM M. MOREHOUSE  ALBERT W. GIROTTI
Affiliation:Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
Abstract:
Abstract— Photooxidation reactions in ascorbate (AH)-containing erythrocyte membrane suspensions have been studied in broad perspective by simultaneously monitoring lipid peroxidation in the membrane compartment and formation of hydrogen peroxide (H2O2) and hydroxyl radical (OH) in the aqueous compartment. Non-bound uroporphyrin (UP) and membrane-bound protoporphyrin (PP) were used as sensitizers. Photoreduction of UP to the radical anion (UP-) was detected by electron spin resonance when UP/AH/membrane mixtures were irradiated anaerobically. Aerobic irradiation resulted in a strong AH--stimulation of lipid peroxidation, H2O2 formation, and OH- generation (detected with 2-deoxyribose (DOR) and the spin trap 5,5-dimethyl-l-pyrroline-N-oxide). Use of diagnostic agents (e.g. catalase, desferrioxamine, mannitol) revealed that OH- is involved in light-stimulated DOR oxidation, but not in lipid peroxidation. Similar irradiation in the presence of PP resulted in far greater lipid peroxidation than observed with UP, but less DOR oxidation, and insignificant accumulation of H2O2. This suggests that photoreduction of membrane-bound PP is less efficient, possibly due to hindered access of AH-.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号