首页 | 本学科首页   官方微博 | 高级检索  
     

铂掺杂扶手椅型石墨烯纳米带的电学特性研究
引用本文:许俊敏,胡小会,孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电学特性研究[J]. 物理学报, 2012, 61(2): 27104-027104
作者姓名:许俊敏  胡小会  孙立涛
作者单位:东南大学MEMS教育部重点实验室, SEU-FEI纳皮米中心, 南京 210096;东南大学MEMS教育部重点实验室, SEU-FEI纳皮米中心, 南京 210096;东南大学MEMS教育部重点实验室, SEU-FEI纳皮米中心, 南京 210096
基金项目:国家重点基础研究发展计划(973)项目(批准号:2011CB707601, 2009CB623702), 国家自然科学基金(批准号:51071044, 60976003, 61006011), 教育部新世纪优秀人才支持计划(批准号:NCEF-09-0293) 和博士点基金(批准号:20100092110014)资助的课题.
摘    要:本文采用基于密度泛函理论(DFT)的第一性原理计算了铂原子填充扶手椅型石墨烯纳米带(AGNR)中双空位结构的电学性能.计算结果表明: 通过控制铂原子的掺杂位置, 可以实现纳米带循环经历小带隙半导体—金属—大带隙半导体的相变过程; 纳米带边缘位置是铂原子掺杂的最稳定位置, 边缘掺杂纳米带的带隙值随宽度的变化与本征AGNR一样可用三簇曲线表示, 但在较大宽度时简并成两条曲线, 一定程度上抑制了带隙值的振荡; 并且铂原子边缘掺杂导致宽度系数Na = 3p和3p + 1(p是一个整数)的几个较窄纳米带的带隙中出现杂质能级, 有效地降低了其过大的带隙值. 此外, 铂掺杂AGNR的能带结构对掺杂浓度不是很敏感, 从而降低了对实验精度的挑战. 本文的计算有利于推动石墨烯纳米带在纳米电子学方面的应用.

关 键 词:扶手椅型石墨烯纳米带    双空位  能带结构
收稿时间:2011-07-04

Electrical properties of platinum doped armchair graphene nanoribbons
Xu Jun-Min,Hu Xiao-Hui and Sun Li-Tao. Electrical properties of platinum doped armchair graphene nanoribbons[J]. Acta Physica Sinica, 2012, 61(2): 27104-027104
Authors:Xu Jun-Min  Hu Xiao-Hui  Sun Li-Tao
Affiliation:SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China;SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China;SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
Abstract:The platinum-doped graphene has been achieved in our previous experiments. To further study the effects of metal doping on the band structures of graphene, and provide theoretical guidance for the next step of the experiment, we analyze the electronic properties of armchair graphene nanoribbons (AGNRs) with platinum atoms doping in the divacancy positions using first principle calculation based on density functional theory. The results show that the band structures of AGNRs can be effectively tailored by controlling the doping position on ribbons. Edge position is the most stable position for platinum atom. The band gaps of edge doped AGNRs can be shown in three curves like that of pristine AGNRs. However, they degenerate into two curves at large width, inhibiting the vibration of band gaps to some extent. In addition, several narrow platinum-doped AGNRs with width index Na = 3p and 3p + 1 have impurity level(s) in the band gap, reducing the large band gap effectively. Furthermore, band characteristics of platinum doped AGNRs are not sensitive to doping concentration, thus reducing the challenge of experimental precision. Our results will promote the application of graphene nanoribbons in the field of nano-electronics.
Keywords:armchair graphene nanoribbon  platinum  divacancy  band structure
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号