首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metabolic study of Angelica dahurica extracts using a reusable liver microsomal nanobioreactor by liquid chromatography–mass spectrometry
Authors:Shu‐Lin Peng  Xun Liao  Li‐Sheng Ding  Yi‐Ming Liu
Institution:1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China;2. Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
Abstract:Highly active and recoverable nanobioreactors prepared by immobilizing rat liver microsomes on magnetic nanoparticles (LMMNPs) were utilized in metabolic study of Angelica dahurica extracts. Five metabolites were detected in the incubation solution of the extracts and LMMNPs, which were identified by means of HPLC‐MS as trans‐imperatorin hydroxylate (M1), cis‐imperatorin hydroxylate (M2), imperatorin epoxide (M3), trans‐isoimperatorin hydroxylate (M1′) and cis‐isoimperatorin hydroxylate (speculated M2′). Compared with the metabolisms of imperatorin and isoimperatorin, it was found that the five metabolites were all transformed from these two major compounds present in the plant. Since no study on isoimperatorin metabolism by liver microsomal enzyme system has been reported so far, its metabolites (M1′ and M3′) were isolated by preparative HPLC for structure elucidation by 1H‐NMR and MS2 analysis. M3′ was identified as isoimperatorin epoxide, which is a new compound as far as its chemical structure is concerned. However, interestingly, M3′ was not detected in the metabolism of the whole plant extract. In addition, a study with known chemical inhibitors on individual isozymes of the microsomal enzyme family revealed that CYP1A2 is involved in metabolisms of both isoimperatorin and imperatorin, and CYP3A4 only in that of isoimperatorin. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:Angelica dahurica  furocoumarins  metabolites  immobilized liver microsomes  magnetic nanoparticles  HPLC‐MS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号