首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical method for problems in infinite strips with irregularities extending to infinity
Authors:Igor Patlashenko  Dan Givoli
Abstract:The Dirichlet-to-Neumann (DtN) Finite Element Method is a combined analytic-numerical method for boundary value problems in infinite domains. The use of this method is usually based on the assumption that, in the infinite domain D exterior to the finite computational domain, the governing differential equations are sufficiently simple. In particular, in D it is generally assumed that the equations are linear, homogeneous, and have constant coefficients. In this article, an extension of the DtN method is proposed, which can be applied to elliptic problems with “irregularities” in the exterior domain D, such as (a) inhomogeneities, (b) variable coefficients, and (c) nonlinearities. This method is based on iterative “regularization” of the problem in D, and on the efficient treatment of infinite-domain integrals. Semi-infinite strip problems are used for illustrating the method. Convergence of the iterative process is analyzed both theoretically and numerically. Nonuniformity difficulties and a way to overcome them are discussed. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:233–249, 1998
Keywords:Infinite domain  semi-infinite strip  Dirichlet-to-Neumann  Finite element  variable coefficients  nonlinear elliptic PDEs
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号