首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bioinspired Design of a Giant [Mn86] Nanocage-Based Metal-Organic Framework with Specific CO2 Binding Pockets for Highly Selective CO2 Separation
Authors:Shubo Geng  Hang Xu  Chun-Shuai Cao  Prof Tony Pham  Prof Bin Zhao  Prof Zhenjie Zhang
Institution:1. Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071 China;2. Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620 USA
Abstract:Adsorption-based removal of carbon dioxide (CO2) from gas mixtures has demonstrated great potential for solving energy security and environmental sustainability challenges. However, due to similar physicochemical properties between CO2 and other gases as well as the co-adsorption behavior, the selectivity of CO2 is severely limited in currently reported CO2-selective sorbents. To address the challenge, we create a bioinspired design strategy and report a robust, microporous metal–organic framework (MOF) with unprecedented Mn86] nanocages. Attributed to the existence of unique enzyme-like confined pockets, strong coordination interactions and dipole-dipole interactions are generated for CO2 molecules, resulting in only CO2 molecules fitting in the pocket while other gas molecules are prohibited. Thus, this MOF can selectively remove CO2 from various gas mixtures and show record-high selectivities of CO2/CH4 and CO2/N2 mixtures. Highly efficient CO2/C2H2, CO2/CH4, and CO2/N2 separations are achieved, as verified by experimental breakthrough tests. This work paves a new avenue for the fabrication of adsorbents with high CO2 selectivity and provides important guidance for designing highly effective adsorbents for gas separation.
Keywords:Gas Separation  Metal–Organic Framework  Trap for CO2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号