Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases |
| |
Authors: | Olsson Elaine Martinez Aurora Teigen Knut Jensen Vidar R |
| |
Affiliation: | Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway. |
| |
Abstract: | The first part of the catalytic cycle of the pterin‐dependent, dioxygen‐using nonheme‐iron aromatic amino acid hydroxylases, leading to the FeIV?O hydroxylating intermediate, has been investigated by means of density functional theory. The starting structure in the present investigation is the water‐free Fe? O2 complex cluster model that represents the catalytically competent form of the enzymes. A model for this structure was obtained in a previous study of water‐ligand dissociation from the hexacoordinate model complex of the X‐ray crystal structure of the catalytic domain of phenylalanine hydroxylase in complex with the cofactor (6R)‐L ‐erythro‐5,6,7,8‐tetrahydrobiopterin (BH4) (PAH‐FeII‐BH4). The O? O bond rupture and two‐electron oxidation of the cofactor are found to take place via a Fe‐O‐O‐BH4 bridge structure that is formed in consecutive radical reactions involving a superoxide ion, O2?. The overall effective free‐energy barrier to formation of the FeIV?O species is calculated to be 13.9 kcal mol?1, less than 2 kcal mol?1 lower than that derived from experiment. The rate‐limiting step is associated with a one‐electron transfer from the cofactor to dioxygen, whereas the spin inversion needed to arrive at the quintet state in which the O? O bond cleavage is finalized, essentially proceeds without activation. |
| |
Keywords: | cofactors density functional calculations hydroxylation oxygen activation transition states |
本文献已被 PubMed 等数据库收录! |
|