首页 | 本学科首页   官方微博 | 高级检索  
     

ARMAX时间序列模型异常点及异常点斑片的估计和检测
作者姓名:陈平  陈钧
作者单位:1. 东南人学数学系,南京,210096
2. 中国电器科学研究院广州威凯检测技术研究院能力验证部,广州,510663
摘    要:将通常的Gibbs抽样和自适应的Gibbs抽样算法用于带有外生变量的自回归移动平均时间序列(ARMAX)模型的Bayes分析,首先采用一些方法消除ARMAX模型中输入(外生变量)序列的影响,然后在前人工作的基础上给出了一种类似的挖掘相应时间序列中的异常点及异常点斑片的方法.说明了自适应的Gibbs抽样算法也能够有效地检测ARMAX模型中孤立的附加型异常点及异常点斑片.实际的和模拟的结果也显示这些方法可以明显减少掩盖和淹没现象的发生,这是对已有工作的推广和扩充.

关 键 词:时间序列  附加型异常点  异常点斑片  ARMAX模型  Gibbs抽样.   
收稿时间:2009-03-02
修稿时间:2010-02-04
本文献已被 万方数据 等数据库收录!
点击此处可从《系统科学与数学》浏览原始摘要信息
点击此处可从《系统科学与数学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号