首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Segmental dynamics of polymers in nanoscopic confinements,as probed by simulations of polymer/layered-silicate nanocomposites
Authors:V?Kuppa  T?M?D?Foley  Email author" target="_blank">E?ManiasEmail author
Institution:(1) Materials Science & Engineering Department, Penn State University, 325-D Steidle Building, University Park, PA 16802, USA;(2) IGERT/CEMBA, Physics department, Penn State University, University Park, PA 16802, USA
Abstract:In this paper we review molecular modeling investigations of polymer/layered-silicate intercalates, as model systems to explore polymers in nanoscopically confined spaces. The atomic-scale picture, as revealed by computer simulations, is presented in the context of salient results from a wide range of experimental techniques. This approach provides insights into how polymeric segmental dynamics are affected by severe geometric constraints. Focusing on intercalated systems, i.e. polystyrene (PS) in 2 nm wide slit-pores and polyethylene-oxide (PEO) in 1 nm wide slit-pores, a very rich picture for the segmental dynamics is unveiled, despite the topological constraints imposed by the confining solid surfaces. On a local scale, intercalated polymers exhibit a very wide distribution of segmental relaxation times (ranging from ultra-fast to ultra-slow, over a wide range of temperatures). In both cases (PS and PEO), the segmental relaxations originate from the confinement-induced local density variations. Additionally, where there exist special interactions between the polymer and the confining surfaces (e.g., PEO) more molecular mechanisms are identified.Received: 1 January 2003, Published online: 14 October 2003PACS: 83.10.Rs Computer simulation of molecular and particle dynamics - 81.07.Nb Molecular nanostructures - 81.07.Pr Organic-inorganic hybrid nanostructures
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号