首页 | 本学科首页   官方微博 | 高级检索  
     


Non-parametric kernel regression for multinomial data
Authors:Hidenori Okumura  Kanta Naito
Affiliation:a Department of Information Science and Business Management, Chugoku Junior College, Okayama 701-0197, Japan
b Department of Mathematics, Shimane University, Matsue 690-8504, Japan
Abstract:This paper presents a kernel smoothing method for multinomial regression. A class of estimators of the regression functions is constructed by minimizing a localized power-divergence measure. These estimators include the bandwidth and a single parameter originating in the power-divergence measure as smoothing parameters. An asymptotic theory for the estimators is developed and the bias-adjusted estimators are obtained. A data-based algorithm for selecting the smoothing parameters is also proposed. Simulation results reveal that the proposed algorithm works efficiently.
Keywords:62G08   62G20   62H12
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号