首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling of crack growth in ductile solids: a three-dimensional analysis
Authors:Jinkook Kim  Xiaosheng Gao  T S Srivatsan
Institution:Department of Mechanical Engineering, The University of Akron, 302 Buchtel Mall, Akron, OH 44325, USA
Abstract:A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.
Keywords:Ductile fracture  Void growth and coalescence  Void by void growth  Multiple voids interaction  Secondary microvoids  Unit cell analysis  Fracture toughness
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号