首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dislocation-density-based constitutive modelling of tensile flow and work-hardening behaviour of P92 steel
Authors:J Christopher
Institution:Deformation and Damage Modeling Section, Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India
Abstract:The flow and work-hardening behaviour of tempered martensitic P92 steel have been investigated using phenomenological constitutive model in the temperature range 300–873 K for the strain rates ranging from 3.16 × 10?5 to 1.26 × 10?3 s?1. The analysis indicated that the hybrid model reduced to Estrin–Mecking (E–M) one-internal-variable model at intermediate and high temperatures. Further, the analysis also indicated that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation glide in P92 steel. The flow behaviour of the steel was adequately described by the E–M approach for the range of temperatures and strain rates examined. Three distinct temperature regimes have been obtained for the variations in work-hardening parameters with respect to temperature and strain rate. Signatures of dynamic strain ageing in terms of the anomalous variations in work-hardening parameters at intermediate temperatures and the dominance of dynamic recovery at high temperatures have been observed. The evaluation of activation energy suggested that deformation is controlled by the dominance of cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures.
Keywords:P92 steel  tensile work hardening  Estrin–Mecking approach  dynamic recovery
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号