Glycosylidene Carbenes. Part 15. Synthesis of disaccharides from allopyranose-derived vicinal 1,2-diols. Evidence for the protonation by a H-bonded hydroxy group in the σ-plane of the intermediate carbene,followed by attack on the oxycarbenium ion in the π-plane |
| |
Authors: | Pulla Reddy Muddasani Bruno Bernet Andrea Vasella |
| |
Abstract: | The α-D -allo-diol 9 possesses an intramolecular H-bond (HO? C(3) to O? C(1)) in solution and in the solid state (Fig. 2). In solution, it exists as a mixture of the tautomers 9a and 9b (Fig. 3), which possess a bifurcated H-bond, connecting HO? C(2) with both O? C(1) and O? C(3). In addition, 9a possesses the same intramolecular H-bond as in the solid state, while 9b is characterized by an intramolecular H-bond between HO? C(3) and O? C(4). In solution, the β-D -anomer 12 is also a mixture of tautomers, 12a and presumably a dimer. The H-bonding in 9 and 12 is evidenced by their IR and 1H-NMR spectra and by a comparison with those of 3–8, 10 , and 11 . The expected regioselectivity of glycosidation of 9 and 12 by the diazirine 1 or the trichloroacetimidate 2 is discussed on the basis of the relative degree of acidity/nucleophilicity of individual OH groups, as governed by H-bonding. Additional factors determining the regioselectivity of glycosidation by 1 are the direction of carbene approach/proton transfer by H-bonded OH groups, and the stereoelectronic control of both the proton transfer to the alkoxy-alkyl carbene (in the σ-plane) and the combination of the thereby formed ions (π-plane of the oxycarbenium ion). Glycosidation of 9 by the diazirine 1 or the trichloroacetimidate 2 proceeded in good yields (75–94%) and with high regioselectivity. Glycosidation of 9 and 12 by 1 or 2 gave mixtures of the disaccharides 14–17 and 18–21 , respectively (Scheme 2). As expected, glycosidation of 12 by 1 or by 2 gave a nearly 1:1 mixture of regioisomers and a slight preference for the β-D -anomers (Table 4). Glycosidation of the α-D -anomer 9 gave mostly the 1,3-linked disaccharides 16 and 17 (α-D β-D ) along with the 1,2-linked disaccharides 14 and 15 (α-D < β-D , 1,2-/1,3-linked glycosides ca. 1:4), except in THF and at low temperature, where the β-D -configurated 1,2-linked disaccharide 15 is predominantly formed. Similarly, glycosidation of 9 with 2 yielded mainly the 1,3-linked disaccharides (1,2-/1,3-linked products ca. 1:3 and α-D /β-D ca. 1:4). Yields and selectivity depend upon the solvent and the temperature. The regioselectivity and the unexpected stereoselectivity of the glycosidation of 9 by 1 evidences the combined effect of the above mentioned factors, which also explain the lack of regio-complementarity in the glycosidation of 9 by 1 and by 2 (Scheme 3). THF solvates the intermediate oxycarbenium ion, as evidenced by the strong influence of this solvent on the regio- and stereoselectivity, particularly at low temperatures, where kinetic control leads to a stereoelectronically preferred axial attack of THF on the oxycarbenium ion. |
| |
Keywords: | |
|
|