首页 | 本学科首页   官方微博 | 高级检索  
     


DFT/TDDFT studies on the electronic structures and spectral properties of rhenium(I) pyridinybenzoimidazole complexes
Authors:Li Xiaona  Liu Xiaojuan  Wu Zhijian  Zhang Hongjie
Affiliation:State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
Abstract:The electronic structures and spectral properties of three Re(I) complexes [Re(CO)3XL] (X = Br, Cl; L = 1-(4-5'-phenyl-1,3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethylbenzimidazol-2-yl)pyridine (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were fully optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively. The lowest lying absorptions were calculated to be at 481, 493, and 486 nm for 1-3, respectively, and all have the transition configuration of HOMO-->LUMO. The lowest lying transitions can be assigned as metal/ligand-to-ligand charge transfer (MLCT/LLCT) character for 1, ligand-to-ligand charge transfer (LLCT) character for 2, and mixed MLCT/LLCT and intraligand pi-->pi* charge transfer (ILCT) character for 3. The emission of 1 at 551 nm has the MLCT/(3)LLCT character, 2 has the (3)MLCT/(3)LLCT character at 675 nm, and the 651 nm transition of 3 has the character of (3)MLCT/(3)LLCT/(3)ILCT. Ionization potentials (IP) and electron affinities (EA) calculations show that the comparable EA and smaller IP values and the relatively balanceable charges transfer ability of 2 with respect to 1 and 3 result in the higher efficiency of OLEDs. The calculated results show that the absorption and emission transition character and device's efficiency can be changed by altering the ancillary ligands.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号