首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strengthened semidefinite programming bounds for codes
Authors:Monique Laurent
Institution:(1) CWI, Kruislaan 413, 1098, SJ, Amsterdam, The Netherlands
Abstract:We give a hierarchy of semidefinite upper bounds for the maximum size A(n,d) of a binary code of word length n and minimum distance at least d. At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time polynomial in n; this is based on a result of de Klerk et al. (Math Program, 2006) about the regular ∗-representation for matrix ∗-algebras. The Delsarte bound for A(n,d) is the first bound in the hierarchy, and the new bound of Schrijver (IEEE Trans. Inform. Theory 51:2859–2866, 2005) is located between the first and second bounds in the hierarchy. While computing the second bound involves a semidefinite program with O(n 7) variables and thus seems out of reach for interesting values of n, Schrijver’s bound can be computed via a semidefinite program of size O(n 3), a result which uses the explicit block-diagonalization of the Terwilliger algebra. We propose two strengthenings of Schrijver’s bound with the same computational complexity. Supported by the Netherlands Organisation for Scientific Research grant NWO 639.032.203.
Keywords:Stability number  Binary code  Semidefinite programming  Terwilliger algebra  Regular ∗  -representation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号