The Bose-Einstein condensation in a finite one-dimensional homogeneous system of noninteracting bosons |
| |
Authors: | V. A. Alekseev |
| |
Affiliation: | (1) Lebedev Institute of Physics, Russian Academy of Sciences, Moscow, 119991, Russia |
| |
Abstract: | Condensation of the ideal Bose gas in a closed volume having the shape of a rectangular parallel-epiped of length L with a square base of side length l (L ? l) is theoretically studied within the framework of the Bose-Einstein statistics (grand canonical ensemble) and within the statistics of a canonical ensemble of bosons. Under the condition N(l/L)4 ? l, where N is the total number of gas particles, dependence of the average number of particles in the condensate on the temperature T in both statistics is expressed as a function of the ratio t=T/T 1, where T 1 is a certain characteristic temperature depending only on the longitudinal size L. Therefore, the condensation process exhibits a one-dimensional (1D) character. In the 1D regime, the average numbers of particles in condensates of the grand canonical and canonical ensembles coincide only in the limiting cases of t → 0 and t → ∞. The distribution function of the number of particles in the condensate of a canonical ensemble of bosons at t ≤1 has a resonance shape and qualitatively differs from the Bose-Einstein distribution. The former distribution begins to change in the region of t ~ 1 and acquires the shape of the Bose-Einstein distribution for t ? 1. This transformation proceeds gradually that is, the 1D condensation process exhibits no features characteristic of the phase transition in a 3D system. For N(l/L)4 ? 1, the process acquires a 3D character with respect to the average number of particles in the condensate, but the 1D character of the distribution function of the number of particles in the condensate of a canonical ensemble of bosons is retained at all N values. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|