首页 | 本学科首页   官方微博 | 高级检索  
     检索      

仿生射流孔形状减阻性能数值模拟及实验研究
引用本文:李芳,赵刚,刘维新,张殊,毕红时.仿生射流孔形状减阻性能数值模拟及实验研究[J].物理学报,2015,64(3):34703-034703.
作者姓名:李芳  赵刚  刘维新  张殊  毕红时
作者单位:哈尔滨工程大学机电工程学院, 哈尔滨 150001
基金项目:国家自然科学基金(批准号:51275102)资助的课题.* Project supported by the National Natural Science Foundation of China
摘    要:针对横流中的侧向射流能够减小仿生射流表面摩擦阻力问题, 建立仿生射流表面模型, 利用SST k-ω湍模型对不同射流孔形状的仿生射流表面模型进行数值模拟, 并对数值模拟结果进行了实验验证. 结果表明: 当射流孔的流向长度和展向长度不变时, 3号模型的折线形射流孔减阻效果最好; 将折线形射流孔简化为圆弧形, 当r=3–5 mm时, 减阻率随着射流速度的增大而增大, 当r=4 mm时减阻效果最好, 最大减阻率为9.51%. 减阻原因: 通过射流孔向横向主流场中注入射流流体, 改变了射流表面附近边界层的流场结构, 使得边界层黏性底层厚度增加, 垂直于射流表面的法向速度梯度减小, 从而减小了壁面剪应力; 低速的射流流体被封锁在边界层内, 降低了高速流体对壁面的扫掠, 达到了减阻目的.

关 键 词:减阻  射流孔形状  数值模拟  边界层
收稿时间:2014-07-25

Numerical simulation and exp erimental study on drag reduction p erformance of bionic jet hole shap e
Li Fang,Zhao Gang,Liu Wei-Xin,Zhang Shu,Bi Hong-Shi.Numerical simulation and exp erimental study on drag reduction p erformance of bionic jet hole shap e[J].Acta Physica Sinica,2015,64(3):34703-034703.
Authors:Li Fang  Zhao Gang  Liu Wei-Xin  Zhang Shu  Bi Hong-Shi
Institution:College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:Since the lateral jet in a horizontal stream can reduce the friction of bionic jet surface, a bionic jet surface model is established by using the SST k-ω turbulence model in numerical simulation of bionic jet surface for jet hole with different shape, and experimental verification of the numerical simulation results is done. Results show that, when the flow length and span length of the jet hole are kept constant, the drag reduction of the third model with broken-line jet hole is the best; the broken-line jet hole is simplified to an arc-shaped hole, when its radius r=3–5mm, the drag reduction rate increases with jet velocity; furthermore, the best drag reduction can be obtained when r = 4 mm, the maximum drag reduction rate is 9.51%. Drag reduction is produced because the jet fluid injected to the lateral mainstream field through jet holes, would change the flow field structure of boundary layer near jet surface, and make the thickness of the underlying viscous sublayer in boundary layer increase. As a result, the gradient of normal velocity, perpendicular to jet surface, is decreased, and thus reduces the wall shear stress. Meanwhile, the low speed jet fluid is blocked at the boundary layer, reducing the sweep of high speed fluid on the wall, which contributes to the drag reduction.
Keywords:drag reduction  jet hole shape  numerical simulation  boundary layer
本文献已被 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号