首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of hydrothermal treatment on the structure, stability and acidity of Al containing MCM-41 and MCM-48 synthesised at room temperature
Authors:Patrícia A Russo  M Manuela L Ribeiro Carrott  Peter JM Carrott
Institution:

aCentro de Química de Évora and Departamento de Química, Universidade de Évora, Colégio L. A. Verney, 7000-671 Évora, Portugal

Abstract:The effect of hydrothermal treatment of the synthesis gel on the structure, hydrothermal and mechanical stabilities and acidity of MCM-41 and MCM-48 aluminosilicates synthesised at room temperature has been investigated by X-ray diffraction, nitrogen adsorption at 77 K and DRIFTS with pyridine as probe molecule. The influence of the Al content and pore size on the structure of the resulting treated Al-MCM-41 materials has also been studied. For all samples improvement of the structural ordering and increase of the pore size, was observed, with pore wall thickness remaining practically unchanged. For Al-MCM-48 an improvement of the pore size uniformity occurs during the treatment. Only a small loss of pore size uniformity occurred for Al-MCM-41 prepared with hexadecyltrimethylammonium bromide, but with samples prepared with tetra and octadecyltrimethylammonium bromide the treatment generated a bimodal pore size distribution. The pore volume increased (17%) in the case of Al-MCM-48 but decreased (5.5–14%) for Al-MCM-41, suggesting a decrease in surface roughness resulting from increase of the degree of condensation of the pore walls. Both treated and untreated samples presented relatively strong Brønsted sites and increase of the Lewis acidity was found to occur upon treatment. Treated samples were found to be more resistant to refluxing in boiling water and mechanical compaction, which was attributed to more polymerised pore walls, with Al-MCM-41 samples tested demonstrating higher stability than Al-MCM-48. However, the differences in stability of samples prepared with or without hydrothermal treatment were not significant. Both treated and untreated samples presented high hydrothermal stability. Although refluxing in boiling water lead to some loss of structural ordering, only a small decrease of pore volume (3–5.5% for Al-MCM-41 and 8-14% for Al-MCM-48) occurred, with practically no alterations in pore size and wall thickness. Ordered mesopore structure, with narrower pores and thicker walls, was still observed after compression at 590 MPa for most of the samples tested.
Keywords:Ordered mesoporous aluminosilicates  Micelle templated synthesis  Nitrogen adsorption  Hydrothermal stability  Mechanical stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号