首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular Reorientational Dynamics of the Neat Ionic Liquid 1‐Butyl‐3‐methylimidazolium Hexafluorophosphate by Measurement of 13C Nuclear Magnetic Relaxation Data
Abstract:The reorientational dynamics of the ionic liquid 1butyl‐3‐methylimidazolium hexafluorophosphate (BMIM]PF6) were studied over a wide range of temperatures by measurement of 13C spin–lattice relaxation rates and NOE factors. The reorientational dynamics were evaluated by performing fits to the experimental relaxation data. Thus, the overall reorientational motion was described by a Cole–Davidson spectral density with a Vogel–Fulcher–Tammann temperature dependence of the correlation times. The reorientational motion of the butyl chain was modelled by a combination of the latter model for the overall motion with a Bloembergen–Purcell–Pound spectral density and an Arrhenius temperature dependence for the internal motion. Except for C2 in the aromatic ring, an additional reduction of the spectral density by the Lipari–Szabo model had to be employed. This reduction is a consequence of fast molecular motions before the rotational diffusion process becomes effective. The C2 atom did not exhibit this reduction, because the librational motion of the corresponding C2? H vector is severely hindered due to hydrogen bonding with the hexafluorophosphate anion. The observed dynamic features of the BMIM]+ cation confirm quantum‐chemical structures obtained in a former study.
Keywords:green chemistry  hydrogen bonds  ionic liquids  molecular dynamics  NMR spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号