首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solution of the hyperbolic mild‐slope equation using the finite volume method
Authors:J Bokaris  K Anastasiou
Abstract:A finite volume solver for the 2D depth‐integrated harmonic hyperbolic formulation of the mild‐slope equation for wave propagation is presented and discussed. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov‐type second‐order finite volume scheme, whereby the numerical fluxes are computed using Roe's flux function. The eigensystem of the mild‐slope equations is derived and used for the construction of Roe's matrix. A formulation that updates the unknown variables in time implicitly is presented, which produces a more accurate and reliable scheme than hitherto available. Boundary conditions for different types of boundaries are also derived. The agreement of the computed results with analytical results for a range of wave propagation/transformation problems is very good, and the model is found to be virtually paraxiality‐free. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:coastal wave modelling  mild‐slope equation  finite volume method  unstructured triangular mesh  Roe's flux function  implicit time integration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号