首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A study of charge,energy and angular momentum transfer in the 56Fe + 197Au and 56Fe + 107, 109Ag reactions at 7.2 and 8.3 MeV/nucleon
Authors:GJ Wozniak  GJ Mathews  RP Schmitt  R Regimbart  H Hübel  RM Diamond  LG Moretto
Institution:Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA
Abstract:Kinetic energy spectra, charge and angular distributions have been measured for thirty elements produced in the reactions of 401 and 460 MeV 56Fe + 197Au and in the reaction of 470 MeV 56Fe + 107, 109Ag. In addition, γ-ray multiplicities were measured at the 470 MeV bombarding energy for both targets at a limited number of angles. The charge distributions for the deep-inelastic component of these systems increase monotonically with atomic number in the measured angular range, whereas, those for the quasielastic component are skewed toward Z-values below the projectile. The angular distributions for the Fe-induced reactions show a smooth evolution from a side-peaked to forward-peaked distributions with increasing mass transfer. This side peak is more intense and more persistent for mass transfers from the projectile to the target. In the quasielastic region the γ-ray multiplicity is observed to increase almost linearly with decreasing Q-value whereas for large negative β-values it is essentially constant and independent of the exit channel mass asymmetry. Finally, angular distributions, angle-integrated charge distributions and γ-ray multiplicities have been compared with a diffusion model in which the dynamics of shape evolution, N/Z equilibration, angular momentum and energy exchange occur via one-body forces.
Keywords:Nuclear Reactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号