首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of thermally and chemically nonequilibrium flows and heat transfer in underexpanded induction plasmatron jets
Authors:V I Sakharov
Abstract:The results of numerical simulation are presented for thermally and chemically nonequilibrium air plasma flows in a plasmatron discharge channel and underexpanded dissociated and partially ionized air jets flowing past a cylindrical model with a blunt leading edge and cooled copper surface under the experimental conditions realized in a VGU-4 100 kW induction plasmatron (Institute for Problems in Mechanics of the Russian Academy of Sciences) (see, for example, 1, 2]). The nonequilibrium excitation of the vibrational degrees of freedom of the molecules in the modal approximation and the difference between the electron and translational heavy-particle temperatures are taken into account in the calculations. The calculated data on the heat transfer and pressure at the stagnation point are compared with the results obtained within the framework of the thermally equilibrium model. Comparison with the experimental data obtained in the Institute for Problem in Mechanics of the Russian Academy of Sciences (Laboratory for interaction between plasma and radiation and materials) and kindly provided for comparison purposes gives satisfactory agreement.
Keywords:induction plasmatron  numerical simulation  Navier-Stokes and Maxwell equations  underexpanded jets  thermal and chemical nonequilibrium  heat transfer
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号