首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly(pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly(o-phenylenediamine)
Authors:Yukun Yang  Guozhen FangXiaomin Wang  Mingfei PanHailong Qian  Huilin LiuShuo Wang
Institution:Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
Abstract:A facile and efficient molecularly imprinted polymer (MIP) recognition element of electrochemical sensor was fabricated by directly electro-polymerizing monomer o-phenylenediamine (oPD) in the presence of template quinoxaline-2-carboxylic acid (QCA), based on one-step controllable electrochemical modification of poly(pyrrole)-graphene oxide-binuclear phthalocyanine cobalt (II) sulphonate (PPY-GO-BiCoPc) functional composite on glassy carbon electrode (GCE). The MIP film coated on PPY-GO-BiCoPc functional composite decorated GCE (MIP/PPY-GO-BiCoPc/GCE) was presented for the first time. The synergistic effect and electro-catalytic activity toward QCA redox of PPY-GO-BiCoPc functional composite were discussed using various contrast tests. Also, the effect of experimental variables on the current response such as, electro-polymerization cycles, template/monomer ratio, elution condition for template removal, pH of the supporting electrolyte and accumulation time, were investigated in detail. Under the optimized conditions, the proposed MIP sensor possessed a fast rebinding dynamics and an excellent recognition capacity to QCA, while the anodic current response of square wave voltammetry (SWV) was well-proportional to the concentration of QCA in the range of 1.0 × 10−8–1.0 × 10−4 and 1.0 × 10−4–5.0 × 10−4 mol L−1 with a low detection limit of 2.1 nmol L−1. The established sensor was applied successfully to determine QCA in commercial pork and chicken muscle samples with acceptable recoveries (91.6–98.2%) and satisfactory precision (1.9–3.5% of SD), demonstrating a promising feature for applying the MIP sensor to the measurement of QCA in real samples.
Keywords:Electrochemical sensor  Molecularly imprinted poly(o-phenylenediamine)  Poly(pyrrole)  Graphene oxide  Binuclear phthalocyanine cobalt(II) sulphonate  Quinoxaline-2-carboxylic acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号