首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gate control of quantum dot-based electron spin–orbit qubits
Authors:Shudong Wu  Liwen Cheng  Huaguang Yu  Qiang Wang
Institution:College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
Abstract:We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin–orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin–orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin–orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin–orbit qubits.
Keywords:Spin–orbit qubit  Quantum dot  Electric-dipole spin resonance  Spin–orbit coupling  Electric field  Tilted magnetic field
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号