首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial
Authors:M Ijaz Khan  Tasawar Hayat  Sumaira Qayyum  Muhammad Imran Khan  A Alsaedi
Institution:1. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan;2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia;3. Heriot Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
Abstract:Here a novel applications of entropy generation optimization is presented for nonlinear Sisko nanomaterial flow by rotating stretchable disk. Flow is examined in the absence of magnetohydrodynamics and Joule heating. Total irreversibility rate (entropy generation rate) is investigated for different flow parameters. Heat source/sink and viscous dissipation effects are considered. Impacts of Brownian motion and thermophoresis on irreversibility have been analyzed. Governing flow equations comprise momentum, energy and nanoparticle concentration. Von Karman's similarity variables are implemented for reduction of PDEs into ODEs. Homotopy analysis technique for series solutions is implemented. Attention is given to the irreversibility. The impacts of different flow parameters on velocity, nanoparticle concentration, temperature and irreversibility rate are graphically presented. From obtained results it is examined that irreversibility rate enhances for larger estimation of Brinkman number and diffusion. Furthermore it is also examined that temperature and nanoparticle concentration show contrast behavior through Prandtl number and Brownian motion.
Keywords:Sisko nanofluid  Entropy generation (irreversibility)  Viscous dissipation  Heat source/sink  Rotating stretchable disk
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号