首页 | 本学科首页   官方微博 | 高级检索  
     

一种新城市气温模式分类的聚类算法
引用本文:吕佳,熊浩. 一种新城市气温模式分类的聚类算法[J]. 数学的实践与认识, 2007, 37(8): 55-60
作者姓名:吕佳  熊浩
作者单位:1. 重庆师范大学,数学与计算机科学学院,重庆,400047
2. 重庆市电力公司超高压局,重庆,400039
摘    要:城市气温是对城市气候特性评价的一个重要指标.提出核概率聚类算法并将其应用于城市气温的模式分类中,以此寻找城市发展上的共同点.该算法在概率聚类算法上引入了核学习方法的思想,能够很好地处理噪音和孤立点,实现更为准确的聚类.实验结果表明,与相关聚类算法相比,核概率聚类算法聚类效果好,且算法能够很快地收敛.

关 键 词:城市气温  模式分类  核函数  核概率聚类
修稿时间:2005-11-28

Kernel-based Possibilistic Clustering Algorithm Applied to Pattern Classification of City Temperature
LV Jia,XIONG Hao. Kernel-based Possibilistic Clustering Algorithm Applied to Pattern Classification of City Temperature[J]. Mathematics in Practice and Theory, 2007, 37(8): 55-60
Authors:LV Jia  XIONG Hao
Abstract:City temperature is an important index to evaluation of city climate feature.Kernel-based possibilistic clustering algorithm proposed in this paper is applied to pattern classification of city temperature so as to find common ground on city development.The algorithm combines the idea of kernel learning method with possibilistic clustering algorithm.It can preferably deal with noise and outliers and accurately realize clustering. Compared to other relevant algorithms,the simulation results show that the algorithm has the advantage of good clustering effect and fast convergence.
Keywords:city temperature  pattern classification  kernel function  kernel-based possibilistic clustering
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号