首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mathematical modelling and numerical simulation of the morphological development of neurons
Authors:Graham  Bruce P  van Ooyen  Arjen
Institution:1. Department of Trauma and Reconstructive Surgery, Charité University Medical School, 12200, Campus Benjamin Franklin, Berlin, Germany
2. Departments of Medicine and Immunology, University of Colorado Health Sciences Center, 80262, Denver, CO, USA
3. Department of Pathology, University of Michigan Medical School, 48109, Ann Arbor, MI, USA
4. Department of Traumatology, University of Ulm Medical School, 89075, Ulm, Germany
5. Department of Orthopaedic Surgery, Denver Health Medical Center, University of Colorado School of Medicine, 80204, Denver, CO, USA
Abstract:

Background

Neuroprotective strategies for prevention of the neuropathological sequelae of traumatic brain injury (TBI) have largely failed in translation to clinical treatment. Thus, there is a substantial need for further understanding the molecular mechanisms and pathways which lead to secondary neuronal cell death in the injured brain. The intracerebral activation of the complement cascade was shown to mediate inflammation and tissue destruction after TBI. However, the exact pathways of complement activation involved in the induction of posttraumatic neurodegeneration have not yet been assessed. In the present study, we investigated the role of the alternative complement activation pathway in contributing to neuronal cell death, based on a standardized TBI model in mice with targeted deletion of the factor B gene (fB-/-), a "key" component required for activation of the alternative complement pathway.

Results

After experimental TBI in wild-type (fB+/+) mice, there was a massive time-dependent systemic complement activation, as determined by enhanced C5a serum levels for up to 7 days. In contrast, the extent of systemic complement activation was significantly attenuated in fB-/- mice (P < 0.05,fB-/- vs. fB+/+; t = 4 h, 24 h, and 7 days after TBI). TUNEL histochemistry experiments revealed that posttraumatic neuronal cell death was clearly reduced for up to 7 days in the injured brain hemispheres of fB-/- mice, compared to fB+/+ littermates. Furthermore, a strong upregulation of the anti-apoptotic mediator Bcl-2 and downregulation of the pro-apoptotic Fas receptor was detected in brain homogenates of head-injured fB-/- vs. fB+/+ mice by Western blot analysis.

Conclusion

The alternative pathway of complement activation appears to play a more crucial role in the pathophysiology of TBI than previously appreciated. This notion is based on the findings of (a) the significant attenuation of overall complement activation in head-injured fB-/- mice, as determined by a reduction of serum C5a concentrations to constitutive levels in normal mice, and (b) by a dramatic reduction of TUNEL-positive neurons in conjunction with an upregulation of Bcl-2 and downregulation of the Fas receptor in head-injured fB-/- mice, compared to fB+/+ littermates. Pharmacological targeting of the alternative complement pathway during the "time-window of opportunity" after TBI may represent a promising new strategy to be pursued in future studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号