首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal stability of grain boundaries in nanocrystalline Zn studied by positron lifetime spectroscopy
Authors:Kai ZhouHui Li  JinBiao PangZhu Wang
Institution:Department of Physics, Wuhan University, Wuhan 430072, China
Abstract:Nanocrystalline Zn prepared by compacting nanoparticles with mean grain size about 55 nm at 15 MPa has been studied by positron lifetime spectroscopy. For the bulk Zn sample, the vacancy defect is annealed out at about 350 °C, but for the nanocrystalline Zn sample, the vacancy cluster in grain boundaries is quite difficult to be annealed out even at very high temperature (410 °C). In the grain boundaries of nanocrystalline Zn, the small free volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav), which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. This stabilization is very important for the nanocrystalline materials using as radiation resistant materials.
Keywords:Positron lifetime  Nanocrystalline Zn  Grain boundaries  Microstructure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号