首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spontaneous symmetry breakings in Z2 gauge theories for doped quantum dimer and eight-vertex models
Authors:Ikuo Ichinose  Daisuke Yoshioka
Institution:Department of Applied Physics, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Abstract:Behavior of doped fermions in Z2 gauge theories for the quantum dimer and eight-vertex models is studied. Fermions carry charge and spin degrees of freedom. In the confinement phase of the Z2 gauge theories, these internal symmetries are spontaneously broken and a superconducting or Neél state appears. On the other hand in the deconfinement-topologically ordered state, all symmetries are respected. From the view point of the quantum dimer and eight-vertex models, this result indicates interplay of the phase structure of the doped fermions and background configuration of the dimer or the eight-vertex groundstate. At the quantum phase transitions in these systems, structure of the doped fermions groundstate and also that of the background dimer or eight-vertex groundstate both change. Translational symmetry breaking induces a superconducting or antiferromagnetic state of the doped fermions.
Keywords:11  15  -q  71  10  Hf
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号