首页 | 本学科首页   官方微博 | 高级检索  
     


The biaxial loading response of powder aluminum at elevated temperature
Authors:T. O. Woods  D. G. Berghaus
Affiliation:(1) USFDA/CDRH Division of Mechanics and Materials Science, 2200 Wilkins Avenue, 20852 Rockville, MD;(2) ESM Program, School of Civil Engineering, Georgia Institute of Technology, 30332 Atlanta, GA
Abstract:
Nuclear fuel can be fabricated using powder-metallurgy processes by compacting uranium-oxide powder with aluminum powder to form a cermet and then extruding the cermet to form fuel tubes. This method of production allows greater control of uranium-oxide particle size and distribution in the tube, making the production of fuel with greater concentrations of uranium oxide possible, and thus decreasing the volume of radioactive waste remaining after the fuel is spent. As the concentration of uranium oxide increases, however, there is an increase in failures during extrusion. To address this problem, an experimental procedure was developed to examine the response of powder aluminum, a material with a structure similar to that of the cermet fuel, to biaxial loadings such as those experienced during extrusion. Biaxial loadings can be varied from pure shear to simple tension or compression, or to combinations of these loadings in a numerically controlled ‘tension-torsion’ testing machine. Data obtained using this system were used to develop a model for the post-yield behavior in extruded powder aluminum which includes information derived both from the macroscopic stress-strain behavior of 1100 aluminum and extruded powder aluminum and from the observed microscopic structure of the extruded powder aluminum. This paper describes the development of the experimental system and shows the different biaxial mechanical behavior of the two materials. Test fixtures were developed and software was written to control constant strain-rate tension, compression, torsion, combined tension-torsion, and combined compression-torsion tests performed using a computer-controlled MTS biaxial testing machine. Extruded powder aluminum and 1100 aluminum specimens were tested at 427°C, the powder-aluminum extrusion temperature, under those loading conditions. Each specimen was subjected to only one loading cycle. Data were recorded during loading only. Tested specimens were also sectioned and examined microscopically.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号